Annexure 9

Methodology for Sample Collection, Preservation and Analysis of Ground and Surface Water Bodies

Introduction: Understanding the water quality is important for assessing the existing water environment and evaluates the expected impact due to the proposed project. In preparation of this report, critical issues are identified to suggest appropriate mitigation measures during operation phase of the quarry. The study of water environment aims at :

- Understand the baseline characteristics,
- Identify water polluting sources;
- Identify critical parameters of water characteristics and their origin;
- Predict impact of the existing and the future relevant activities on water quality

Major Quantity Based Ground Water Problems and Issues

The norms stipulated for evaluation of quantity and Ground Water Development are presented below:

Stage of Ground	Significant Long Term Decline		Categorization
Water Development	Pre-monsoon	Post-monsoon	
<= 70%	No	No	Safe
>70% and <=90%	No	No	Safe
	Yes/No	No/Yes	Semi-critical
>90% and <=100%	Yes/No	No/ Yes	Semi-critical
	Yes	Yes	Critical
>100%	Yes/No	No/Yes	Over-Exploited
	Yes	Yes	Over-Exploited

Ground Water Monitoring: The groundwater contamination occurring due to either natural causes or anthropogenic activities needs regular monitoring of water quality to device ways and means to protect it. Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) and MPCB have conducted groundwater quality monitoring programme in the various Districts of Maharashtra state. It involves identification of major pollutants and confirmation of suitability of groundwater for human consumption (drinking purposes, etc).

Sources of Pollution in Ground Water and its Impacts

Parameter	Status	Causative agents	Impacts on Water Quality
pН	Low pH	Acidic rain, water ions such as	Pipe corrosion, causing the
		nitrates and sulfates	release of iron, lead, or copper,
			discoloration, bitter taste
TDS	High	Interaction between ground water	Cause corrosion of pipes and
	levels	and subsurface minerals.	plumbing systems, no health
	of salts	Agricultural run-off, urban run-off,	threat
		industrial wastewater & sewage	

Parameter	Status	Causative agents	Impacts on Water Quality
Hardness	Presence of	Soil type, weathering of limestone,	Soap consumption, heart
	Ca and Mg	sedimentary rock and calcium	related impacts, incrustation
		bearing minerals, chemical and	of pipes, soap consumption
		mining industry effluent, excessive	
		application of lime	
Sulphate	High levels	Oxidation of sulfite ores, input of	High sulphate with
		industrial wastes, soils rich in	Magnesium causes
		minerals containing Sulphate	laxative effects.
		Sodium Sulphate (Glauber's salt),	
		Magnesium Sulphate (Epsom salt),	
		Calcium Sulphate (gypsum)	
Fluoride	High and	Geological settings, rocks and to	High fluoride- fluorosis
	low	volcanic activity,. Agricultural	Low fluoride – dental
	Levels	(use of phosphatic fertilizers)	carries
Nitrate	High levels	Over-application of fertilizers,	"Blue-baby syndrome" in
		manure and urine, improper	children less than six
		operation and maintenance of	months of age,
		septic systems	possibility of cancer
Chloride	High levels	High temp and less	Salty taste
		rainfall. Soil porosity and	
		permeability can build up	
		chloride ions in water	
Microorgan	Presence	Sewage, leaky septic systems	Indicate presence of
isms			pathogens, Bacteria can
			convert nitrate in water to
			the more dangerous nitrite.

Sources of Pollution in Ground Water and its Impacts (Contd..)

Methodology : In order to generate the data on quality of water bodies, Sampling Procedure for Primary Data Collection have been specified by various authorities. In order to assess the impact of domestic, industrial and other activities on surface and ground water, the identified sources are examined for physico-chemical, nutrient, trace metals and microbiological parameters. Uniform protocol on water quality monitoring as specified by the Ministry of Environment and Forests (2005) was followed for selection of parameters. The samples were collected and analyzed as per the procedures specified in "Standards Methods for the Examination of Water and Waste Water" published by American Public Health Association (APHA) 21st edition (2005).

Samples for chemical analysis are collected in polyethylene carboys. Samples collected for heavy metal analysis were acidified (1ml HNO₃/100 ml). Samples for microbiological analysis were collected in sterilized glass bottles. Parameters analyzed at the site are pH, temperature, odour, turbidity and dissolved oxygen using portable water analysis kits. The methodology for sample collection and preservation techniques was followed as per the Standard Operating Procedures (SOP) mentioned below:

Water Sample Collection, Size of Sample and Preservation			
Parameters	Sample Collection	Sample Size	Storage/Preservation
pН	Grab sampling	50 ml	On site analysis
	Plastic/glass container		
Electrical	Grab sampling	50 ml	On site analysis
Conductivity	Plastic/glass container		
Total Suspended	Grab sampling	100 ml	Refrigeration, can be
Solids	Plastic/glass container		stored for 7 days
Total Dissolved	Grab sampling	100 ml	Refrigeration, can be
Solids	Plastic/glass container		stored for 7 days
BOD	Grab sampling	500 ml	Refrigeration, 48 hrs
	Plastic/glass container		
COD	Grab sampling	100 ml	Add H_2SO_4 to pH>2,
	Plastic/glass container		refrigeration; 7 days
Hardness	Grab sampling	100 ml	Add HNO ₃ to pH $<$ 2,
	Plastic/glass container		refrigeration; 6 months
Chlorides	Grab sampling	50 ml	Not required; 28 days
	Plastic/glass container		
Sulphates	Grab sampling	100 ml	Refrigeration, 28 days
	Plastic/glass container		
Nitrates	Plastic Containers	100 ml	Refrigeration, 48 hrs
Fluorides	Plastic Containers	100 ml	Not required; 28 days
	only		
Alkalinity	Plastic/glass	100 ml	Refrigeration, 14 days
	containers		
Ammonia	Plastic/glass	100 ml	Add H_2SO_4 to pH>2,
	containers		refrigeration; 28 days
Hexavalent	Plastic/glass	100 ml	Grab sample;
Chromium, Cr ⁺⁶	containers		refrigeration; 24 hrs
	rinse with 1+1 HNO ₃		
Trace Metals (Hg,	Plastic/glass	100 ml	Add HNO ₃ to pH $>$ 2,
Cd, Cu, Fe, Zn, Pb)	containers		Grab sample; 6 months
	rinse with 1+1 HNO ₃		

 Table 1: Parameter Specific "Standard Operating Procedure" for

 Water Sample Collection, Size of Sample and Preservation

Source: Standard Methods for the Examination of Water and wastewater, Published by APHA, AWWA, w.e.f. 21th Edition, 2005.

The analytical techniques (Indian Standard Methods / APHA) used for water and wastewater analysis for a few parameters is given in the **Table 2**.

De	Methods		
Parameters	(Indian Standard)	Methods (APHA)	
pН	IS 3025 (part 11) : 1983	APHA-4500-H ⁺	
Colour	IS 3025 (part 4) : 1983	APHA-2120 C	
Odour	IS 3025 (part 5) : 1983	IS:3025, part-4	
Temperature	IS 3025 (part 9) : 1984	APHA-2550 B	
Dissolved Oxygen	IS 3025 (part 38) : 1989	APHA-2500 O	
BOD	IS 3025 (part 44) : 1993	APHA-5210 B	
COD	IS 3025 (part 58) : 2006		
Electrical Conductivity	IS 3025 (part 14) : 1984	APHA-2510 B	
Turbidity	IS 3025 (part 10) : 1984	APHA-2130 B	
Chlorides	IS 3025 (part 32) : 1988	APHA-4500 Cl ⁻	
Fluorides		APHA-4500 F	
Total Dissolved Solids	IS 3025 (part 16) : 1984	АРНА-2540 С	
Total Suspended Solids	IS 3025 (part 17) : 1984	APHA-2540 D	
Total Hardness	IS 3025 (part 21) : 1983	АРНА-2340 С	
Alkalinity	IS 3025 (part 23) : 1986	APHA-2320 B	
Sulphates	IS 3025 (part 24) : 1986	APHA-4500 SO4 ⁻²	
Arsenic	IS 3025 (part 37) : 1988	APHA-3120 B/ APHA-3114 B/ APHA-3500 As	
Calcium	IS 3025 (part 40) : 1991	APHA-3120 B/ APHA-3500 Ca	
Magnesium	IS 3025 (part 46) : 1991 IS 3025 (part 46) : 1994	APHA-3120 B/ APHA-3500 Mg	
Manganese	IS 3025 (part 10) : 1991 IS 3025 (part 59) : 2006	APHA-3120 B/ APHA-3500 Mg	
Mercury	IS 3025 (part 48) : 1994	APHA-3120 B/ APHA-3500 Hg	
÷	IS 3025 (part 56) : 2003	APHA-3120 B/ APHA-3114 B/	
Selenium		APHA-3500 Se	
Lead	IS 3025 (part 47) : 1994	APHA-3120 B/ APHA-3500 Pb	
Copper	IS 3025 (part 42) : 1992	APHA-3120 B/ APHA-3500 Cu	
Cadmium	IS 3025 (part 41) : 1992	APHA-3120 B/ APHA-3500 Cd	
Iron	IS 3025 (part 53) : 2003	APHA-3120 B/ APHA-3500 Fe	
Zinc	IS 3025 (part 49) : 1994	APHA-3120 B/ APHA-3500 Zn	
Boron	IS 3025 (part 57) : 2005	APHA-4500 B	
Coliforms	IS 5401 (part 1) : 2002	APHA-9215 D	

Table 2: Methodology for Analysis of Water

Relevance of Parameters Selected: The water quality and human health are closely related. The drinking water quality causes 75% of diseases to the human beings. The concentrations of the several inorganic and organic substances dissolved in water beyond acceptable range may cause an adverse impact on human health. The harmful effects on human body depending on the quality of water are summarized below in **Table 3**.

Parameters	Probable Effects
Colour, Odour and Taste	Makes water aesthetically Undesirable.
Turbidity	High turbidity increases contamination/pollution
рН	Indicative of acidic or alkaline waters, affects taste and corrode water supply
	system
	Affects water supply system (scaling), excessive soap consumption,
Hardness	calcification of arteries, may cause urinary concretions, diseases of kidney or
	bladder and stomach disorder.
Iron (Fe)	Gives bittersweet astringent taste causes staining of laundry and porcelain. In
	traces it is essential for nutrition.
Chloride (Cl)	May be injurious to some people suffering from diseases of hearts and kidneys. Taste, indigestion, corrosion and palatability are affected.
Residual free	Excessive free chlorine in drinking water may cause asthma, colitis and
Chlorine,	eczema. (Only when water is chlorinated)
Total Dissolved Solids (TDS)	Palatability decreases and may cause gastro-intestinal irritation in human, may have laxative effect particularly upon transits.
Calcium (Ca)	Insufficiency causes severe rickets; excess causes concretions in the body such
	as kidney or bladder stones and irritation in urinary passages.
	Essential for nervous and muscular system, cardiac functions and in coagulation of blood.
Magnagium	Its salts are cathartic and diuretic. High concentration may cause laxative effect
Magnesium (Mg)	particularly on new users. Mg deficiency is associated with structural and
(1419)	functional changes. It is essential as an activator of many enzyme systems.
Copper (Cu)	Astringent taste but essential element in human metabolism. Deficiency results in nutritional anemia in infants. Large amount may result in liver damage, cause CNS irritation and depression. In water supply system, it enhances corrosion of aluminum particular.
Sulphate (SO ₄)	Causes gastro intestinal irritation with Mg or Na can have a cathartic effect on users. Conc. more than 750 mg/L along with Mg may have laxative effect.
Nitrate (NO ₃)	Causes infant methaemoglobinaemia (Blue Babies) at very high conc., causes gastric cancer and adversely affects CNS and cardiovascular system.
Fluride (F)	Reduces dental carries, very high concentration may cause crippling skeletal fluorosis. Less than 1.0 mg/L is essential.
Cadmium (Cd)	Acute toxicity may be associated with renal, arterial hypertension, itai-itai disease. Cd salts cause cramps, nausea, vomiting and diarrhea.
Cadmium (Cd)	Acute toxicity may be associated with renal, arterial hypertension, itai-itai disease. Cd salts cause cramps, nausea, vomiting and diarrhea.
Lead (Pb)	Toxic in acute and chronic exposures, burning in mouth, severe inflammation of gastro-intestinal tract with vomiting and diarrhea, chronic toxicity produces nausea, severe abdominal pain, paralysis, mental confusion, visual disturbances, anemia etc.

 Table 3 : Effect of Water Quality on Human Health

Parameters	Probable Effects		
$Z_{inc}(Z_n)$	An essential element in human metabolism. Taste threshold for Zn occurs at		
Zinc (Zn)	about 5 mg/L, imparts astringent taste to water.		
Chromium	Hexavalent state of Cr produces lung tumors, can produce coetaneous and nasal		
(Cr)	mucous membrane ulcers and dermatitis.		
Arsenic (As)	Causes skin damage, circulatory problems and risk of skin cancer.		
Antimony (Sb)	Increase in blood cholestorel, decrease in blood sugar.		
Aluminum (Al)	Leads to neurological disorders.		
Barium (Ba)	Increases blood pressure.		
Beryllium (Be)	Is carcinogenic (cancerous).		
Cyanide (CN)	Causes nerve damage, thyroid problem.		
Mercury (Hg)	Neurological and renal disturbances. Excess causes gonad toxic and mutagenic effects and disturbs the cholesterol metabolism.		
Manganese (Mn)	Essential as a cofactor in enzyme systems and metabolism processes. Excess causes change in appetite and reduction in metabolism of iron to form hemoglobin. Imparts undesirable taste and stains plumbing fixtures and		
(0,1)	laundry.		
Selenium (Se)	Leads to hair, finger loss, numbness in fingers or toes, circulatory problems.		
Boron (B)	Affects CNS, may cause nausea, cramps, convulsions, coma, etc.		
Alkalinity	Imparts unpleasant taste, may be deleterious to humans in presence of high pH, hardness & TDS.		
Pesticides	Imparts toxicity when it accumulates in organs of human body affecting immune and nervous systems. May be carcinogenic.		
Phosphate (PO ₄)	High conc. may cause vomiting and diarrhea, stimulate secondary hyperthyroidism and bone loss.		
Sodium (Na)	Harmful to persons suffering from cardiac, renal and circulatory diseases.		
Potassium (K)	An essential nutritional element but in excess is laxative.		
Nickel (Ni)	Non toxic element but may be carcinogenic (cancerous), can react with DNA resulting in DNA damage.		
Pathogenic Micro- Organisms	Causes water born diseases like Jaundice, Typhoid, and Cholera etc. produces infections involving skin, mucous membrane of eyes, ears & throat.		
Radioactive Materials	Increases risk of cancer		

 Table 3 (Contd..) : Effect of Water Quality on Human Health